한국과학영재학교 수리정보과학부

2017-06 POW

Let $latex A_1$, $latex A_2$, $latex A_3$, $latex \ldots$, $latex A_{20}$ be a $latex 20$-sided polygon $latex P$ in the plane. Suppose all of the side lengths of $latex P$ are $latex 1$, the interior angle at $latex A_i$ measures $latex 108$ degrees for all odd $latex i$, and the interior angle at $latex A_i$ measures $latex 216$ degrees for all even $latex i$. Describe about the intersection points of the lines $latex A_1A_9$, $latex A_2A_{12}$, $latex A_3A_{15}$, $latex A_4A_{18}$, and $latex A_6A_{20}$.

Due day is April 26.