For all positive integers $latex n$, find the value
$latex \displaystyle\frac{1}{n}\sum_{k=1}^n \frac{k\cdot k!\cdot \binom{n}{k}}{n^k}$.
Due day is April 19.
For all positive integers $latex n$, find the value
$latex \displaystyle\frac{1}{n}\sum_{k=1}^n \frac{k\cdot k!\cdot \binom{n}{k}}{n^k}$.
Due day is April 19.